Table 4

Table 4.1 simulated data for torque errort.
TORQUE ERROR (Nm) WITHDIRECT TORQUE CONTROL TORQUE ERROR (Nm) WITH FUZZY TIME (S)
0 0 0
0.2 0.025 1
0.15 0.018 2
0.16 0.02 3
0.15 0.0195 4
0.15 0.0195 10

Figure 4.1 Result for torque error using DTC and fuzzy logic with duty ratio.
In the analysis, the data in the table were applied. The torque behavior of the motor using ordinary DTC and fuzzy logic with duty ratio control for a torque command of 0.15Nm with the output drive updated at a rate of 5kHz were used. The flux ripple regained was 0.05wb (0.2-0.15)N-m greater and lesser values

with the only DTC while in fuzzy logic with duty ratio control, the ripple was reduced further to 0.0055Nm (0.025-0.00195)Nm greater and lesser value, assumed under shoot in the torque value at the starting point of each voltage vector were neglected..
or were neglected..
Table 4.2 Data for flux linkage error
ERROR IN FLUX LINKAGE (Wb) WITH DTC ERROR IN FLUX LINKAGE (Wb) WITH FUZZY TIME
0 0 0
18 2.4 1
12 1.5 2
14 1.7 3
13.33 1.733 4
13.33 1.733 10

Figure 4.2 Result for flux linkage in fuzzy logic with duty ratio and DTC
Above data were used. torque response of the motor in the control for a step torque in fuzzy logic with duty ratio control and DTC for a torque command of 2.4Wb with the motor drive output updated at a rate of 5kHz were used, the ripple generated was 4.67Wb (18-13.33) Wb greater and lesser values with ordinary DTC, while in fuzzy logic with duty ratio control, ripples was reduced further to 0.667b (2.4-1.733)Wb upper and lower values, assumed order response in flux value at starting of each voltage sector were neglected.

Table 4.3 Data for position of the stator flux linkage.
ERROR IN THE POSITION OF FLUX LINKAGE WITH DTC ERROR IN THE POSITION OF FLUX LINKAGE WITH FUZZY TIME
0 0 0
3.3 0.9 1
2.2 0.06 2
2.5 0.07 3
2.45 0.0643 4

Fig ure 43 Result for position of stator flux linkage using DTC and fuzzy logic with duty ratio.
In the analysis, the data in the table were used. The position where the stator flux linkage of the motor using ordinary DTC and fuzzy logic with duty ratio control respectively for a step angular command of 3.3 degree with the drive output updated at a rate of 5kHz were used, the position where the flux linkage ripple was reduced to 0.85degree (3.3-2.45) greater and lesser values with the ordinary DTC while in fuzzy logic with duty ratio control, the ripple was reduced to 0.857 degree (0.9-0.0643)degree greater and lesser values, assumed the under shoot in the flux value at the starting of each voltage sector were neglected.